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Insights into Colon Cancer Etiology
via a Regularized Approach
to Gene Set Analysis of GWAS Data

Lin S. Chen,1 Carolyn M. Hutter,2 John D. Potter,2 Yan Liu,1 Ross L. Prentice,2

Ulrike Peters,2 and Li Hsu1,*

Genome-wide association studies (GWAS) have successfully identified susceptibility loci from marginal association analysis of SNPs.

Valuable insight into genetic variation underlying complex diseases will likely be gained by considering functionally related sets of genes

simultaneously. One approach is to further develop gene set enrichment analysis methods, which are initiated in gene expression

studies, to account for the distinctive features of GWAS data. These features include the large number of SNPs per gene, the modest

and sparse SNP associations, and the additional information provided by linkage disequilibrium (LD) patterns within genes. We propose

a ‘‘gene set ridge regression in association studies (GRASS)’’ algorithm. GRASS summarizes the genetic structure for each gene as

eigenSNPs and uses a novel form of regularized regression technique, termed group ridge regression, to select representative eigenSNPs

for each gene and assess their joint association with disease risk. Compared with existing methods, the proposed algorithm greatly

reduces the high dimensionality of GWAS data while still accounting for multiple hits and/or LD in the same gene. We show by simu-

lation that this algorithm performs well in situations in which there are a large number of predictors compared to sample size. We applied

the GRASS algorithm to a genome-wide association study of colon cancer and identified nicotinate and nicotinamide metabolism and

transforming growth factor beta signaling as the top two significantly enriched pathways. Elucidating the role of variation in these

pathways may enhance our understanding of colon cancer etiology.
Introduction

The complete sequence of the human genome, the

HapMap Project, and recent advances in genotyping tech-

nology have made large-scale genome-wide association

studies (GWAS) feasible. As a result, many novel suscepti-

bility loci have been identified from the marginal associa-

tion analysis of SNPs with disease risk.1 However, there is

far more information in the data that researchers are just

beginning to explore. One particular topic of interest is

how germline variation from genes with related functions

may affect disease risk.

It is well established that functionally related genes can

act concordantly2 and that their action may be influenced

by genetic variation in the chromosomal region of the

gene (including the coding region, as well as the upstream

and downstream sequences). The dense SNP marker panels

from GWAS offer an unprecedented opportunity to com-

prehensively study germline variability of gene sets.

Several informatics databases, such as the gene ontology

(GO) database,3 the Kyoto Encyclopedia of Genes and

Genomes (KEGG),4 and the Molecular Signatures Database

(MSigDB),5 have been curated to provide information on

functions and relatedness of genes and to classify genes

into gene sets with common underlying features. By as-

signing SNPs to the nearest genes based on genomic loca-

tion, one can combine information on all of the variation

in the same gene set and collectively assess the association

with disease risk. Such analysis can provide valuable
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insights into the biological basis underlying disease risk.

Indeed, the successes of using prior knowledge to assess

gene set association in GWAS have been reported in stud-

ies of diseases including Parkinson disease,6,7 age-related

macular degeneration,7 multiple sclerosis,8 and bipolar

disorder.9

Gene set enrichment analysis was first proposed by

Mootha et al.10 for detecting concerted changes in the

expression of genes grouped by their functional relatedness.

It has shown great promise in deriving new information

from expression data. Many methods have since been devel-

oped; see, for example, Goeman et al.,11 Subramanian et al.,5

Tian et al.,12 Efron and Tibshirani,13 Jiang and Gentleman,14

and Dinu et al..15 Two recent papers16,17 provide a compre-

hensive review and comparison of these various methods.

Two different approaches are usually taken in assessing

gene set enrichment for expression data. The first approach

investigates whether a gene set of interest is enriched with

genes differentially expressed between two biological states

in comparison to a random gene set. To generate the null

distribution for this approach, one can randomly sample

genes from the same data set to form random gene sets

and calculate null statistics for these random gene sets.

The second approach tests the null hypothesis that the

gene set of interest does not contain any gene or genes

differentially expressed between two biological states.

For this approach, one could permute phenotype labeling

in the data and calculate null statistics based on the per-

muted phenotypes. In either approach, one can obtain
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nonparametric p values of gene set association by com-

paring the observed statistics with the null statistics

obtained under the respective null hypothesis.

Compared to expression data, there are several distinc-

tive features in genome-wide association data that require

different methodological consideration. First, in contrast

to gene expression data, in which each gene contains

only a few transcripts, in GWAS data, each gene is

comprised of a relatively large number of SNPs because of

the high density of marker panels. Second, in contrast to

gene expression data, in which many genes are up- or

downregulated in the diseased group versus the nondi-

seased group, the SNP associations in GWAS data tend to

be modest and somewhat sparse. Third, many SNPs are

in linkage disequilibrium (LD), and using information

from these SNPs jointly can enhance the power for detect-

ing disease risk variants, including detecting variants that

are not directly genotyped.

Methods for gene set enrichment analysis have been

developed for GWAS data. For example, Wang et al.7

extended the method developed by Subramanian et al.5

to GWAS data. PLINK,18 a popular software for analyzing

GWAS data, offers an option to perform gene set analysis,

which we will shorthand by Plink. Holmans et al.9

proposed an approach called ALIGATOR (association list

go annotator), which does not require individual-level

SNP data. Generally speaking, all of these methods are

based on marginal association analysis of each SNP and

don’t make use of LD structure in the data. As such, ungen-

otyped disease-associated variants may not be best ac-

counted for in the gene set analysis. Plink formulates

gene set statistics on the basis of SNPs, whereas Wang

et al.’s method and ALIGATOR are based on genes. Wang

et al. chooses the most significant associated SNP in each

gene, and ALIGATOR chooses the genes that are hit by

any of the top SNPs. Because the number of SNPs in a

gene can be large, test statistics based on genes that are rep-

resented by only one SNP may lose power after adjusting

for the gene size. They may also lose power because of

not accounting for the potential multiple hits in a gene.

Further discussion about these methods and the compar-

ison with the proposed method is given in the Results.

In this paper, we present a gene set association method

that accounts for each of these distinctive properties of

GWAS data. We first assign SNPs to genes and summarize

the variation of a gene by principal components,19 which

we term as ‘‘eigenSNPs.’’ The eigenSNPs capture the overall

gene structure and reduce the local correlation because of

linkage disequilibrium. We then propose to use regularized

regression technique20 to select one or more representative

eigenSNPs for each gene and assess their joint association

with disease risk. The regularization is necessary because

the total number of predictors, here eigenSNPs, is quite

large compared to the sample size. We propose an algo-

rithm called ‘‘gene set ridge regression in association

studies (GRASS),’’ which performs regularized logistic

regression and assesses the gene set association. The under-
The Ame
lying framework in the GRASS algorithm is regression

based and therefore can be readily extended to incorporate

covariates and to include gene-gene and gene-environ-

ment interaction effects at the SNP level.
Materials and Methods

Capturing Gene Structure with Principal

Component Analysis
The first step of our method is to summarize the genetic variation

in each gene. This is performed prior to our gene-set-based anal-

ysis. Often, SNPs within the same gene are in LD and may repre-

sent redundant information. Furthermore, genotyped SNPs may

tag the true risk-associated variants, which may or may not have

been genotyped. It is therefore desirable to capture the unique

genetic variation within a gene to reduce the dimensionality of a

gene and tag the ungenotyped potential risk variants. In addition,

because our gene set analysis is regression based, constructing

unique (orthogonal) components will also enhance both the inter-

pretability of selected components and the chance of identifying

components that are most strongly associated with disease risk.21

For each gene, we use principal components analysis (PCA) to

decompose the genetic variation into orthogonal components.

We perform PCA as follows: let n be sample size and m be the

number of SNPs in a gene. We first standardize the m 3 n SNP

matrix for each gene, as proposed in Price et al.,22 so that SNPs

with different minor allele frequencies (MAFs) are weighted

equally. We apply singular value decomposition on the standard-

ized SNP matrix, Z, and obtain Z ¼ UDV0. Essentially, the decom-

position projects the complete data onto a reduced eigenspace V

of dimension l (l % m). The matrix U is an m 3 l orthogonal matrix

with columns corresponding to sample SNP variations, and the

matrix V is an n 3 l column orthogonal matrix, each column of

which is defined as an eigenSNP and is a linear combination of

all the relevant real SNPs. The matrix D is a diagonal matrix in

which the jth diagonal entry dj is the eigenvalue of the jth

eigenSNP. EigenSNPs are decreasingly ordered by jdjj, and

pj ¼ d2
j =
P

j0 d
2
j0 represents the proportion of variation in the gene

accounted for by the jth eigenSNP. Because a gene contains m

SNPs, each with unit variance, if the proportion of variation of

an eigenSNP i captured is equal to or greater than 1/m, i.e., pi R

1/m, we call the eigenSNP a nontrivial eigenSNP. For each gene,

we select all the nontrivial eigenSNPs, which altogether explain

~95% of the gene variation. When applying group ridge regres-

sion, the nontrivial eigenSNPs from all the genes in the same set

will be treated as predictors in the regression.
Group Ridge Regression with Lasso Penalty

within the Group
The essence of the proposed GRASS algorithm is to identify associ-

ation signals based on predefined gene sets via regularized regres-

sion. The intuition behind regularized regression is as follows:

ordinary maximum likelihood estimation is sometimes not

achievable or not efficient, particularly when the sample size is

small relative to the number of predictors. In such cases, we can

choose to trade bias for efficiency in estimation by maximizing

the log likelihood function, subject to some constraint, or equiva-

lently by minimizing the negated log likelihood plus the penalty

function, which has a one-to-one relationship with the constraint.

Many penalty functions have been proposed for regularizing
rican Journal of Human Genetics 86, 860–871, June 11, 2010 861
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A B C Figure 1. A Graphic Illustration of the
Properties of Different Penalty Functions
A graphic illustration of the properties of
three different penalty functions. The
eclipses represent the likelihood contours.
(A–C) The square, round, and star shapes
represent the lasso, ridge, and bridge
constraint, respectively. The dots are the
points where likelihood contours are ‘‘tan-
gent’’ to the constraints, i.e., the penalized
likelihood estimates. Note that in lasso (A)
or bridge (C), the constraint is discontin-
uous at zero. If the likelihood contour first
touches the constraint at point zero, the
corresponding parameter estimate is zero,
and variable selection is achieved.
parameter values bi for i ¼ 1, ., p predictors. For example, the

lasso penalty20 is the [1 norm of parameter values, in which the

[g norm of parameter vector b is defined as kbkg ¼ ð
Pp

i¼1jbijgÞ
1
g,

g > 0. Therefore, the lasso penalty function is defined as

kbk1 ¼
Pp

i¼1jbij. The ridge23 and bridge penalty24 take the form

of the [2 and [g norm with 0 < g < 1, respectively. As expected,

different penalty functions affect the estimation in different

ways. Figure 1 shows the behavior of these three penalty functions

in a two-parameter case, b1 and b2. To obtain maximum con-

strained likelihood estimators, we essentially seek the points at

which the log likelihood contour first ‘‘hits’’ the constraint. Lasso,

ridge, and bridge penalty functions have constraints shaped like

a square, circle, and star, respectively. As a consequence of the

different shapes, lasso is likely to involve variable selection (b1 ¼ 0

or b2¼ 0), as well as parameter estimate shrinkage, and ridge yields

mainly parameter estimate shrinkage; in contrast, bridge induces

an even higher chance of variable selection than lasso, because

the star shape of bridge makes the likelihood contour even more

likely to hit one of the points (b1 ¼ 0 or b2 ¼ 0) than does the dia-

mond shape of lasso.25

For gene set association analysis, we would like the estimation to

capture the effects of all genes in the same pathway by using the

most representative eigenSNPs in each gene. Note, in this context,

that ‘‘the most representative eigenSNPs’’ refers to those that are

most associated with disease risk. They are not necessarily the

eigenSNPs that explain the most variation in a gene. This requires

variable selection within a gene while shrinking the parameter

estimates for the gene effects across genes. Clearly, none of the

penalty functions discussed above meet these objectives. We

therefore propose a group ridge penalty that is specifically tailored

to the gene set association analysis via GWAS data. The group ridge

combines [2-norm regularization at the gene level and [1-norm

regularization within each gene. It shrinks (by ridge) the con-

tribution to disease risk from each gene to down-weigh genes

that may otherwise possibly exhibit extreme associations because

of stochastic variation while performing eigenSNP variable selec-

tion (by lasso) within each gene simultaneously. This penalty

function ensures that each gene contributes to the association

score of the gene set. The amount of the contribution from each

gene is determined flexibly by selecting the most associated

eigenSNPs, which could be more than one, within the gene.

In comparison, a simple lasso penalty would primarily impose

variable selection among all eigenSNPs, regardless of which gene

they belong to. This may result in gene set statistics being domi-

nated by a single eigenSNP or by eigenSNPs from only a few genes.

This somewhat contradicts the essence of the gene set association
862 The American Journal of Human Genetics 86, 860–871, June 11,
analysis, in which interest is on the assessment of the collective

effect of a gene set on disease risk. Two other possible group-based

penalty functions have also been proposed in the literature: group

lasso26 and group bridge.27 In our context, group lasso does

considerable variable selection at the gene level while retaining

all eigenSNPs in the selected genes. As such, it also deviates from

the motivation of gene set association analysis. Group bridge does

considerable variable selection at both the gene and eigenSNP

levels and can therefore be overly selective and miss useful, albeit

modest, association signals in GWAS data.

Let X¼ {V1, ., VG} be an n 3 p pooled eigenSNP matrix of a gene

set S with G total genes, in which Vg(g ¼ 1, ., G) is an n 3 kg

eigenSNP matrix for gth gene and n, kg, and p ¼
PG
g¼1

kg are the

number of samples, the number of eigenSNPs in the gth gene,

and the total number of eigenSNPs in the gene set, respectively.

Let the parameter vector be denoted by b ¼ ðb0,bT
1 ,.,bT

GÞ
T, in

which b0 is the intercept and bg(g ¼ 1, ., G) is the vector of cor-

responding regression coefficients for Vg. To simplify the represen-

tation of the log likelihood, we recode the disease status y ¼ 1 for

diseased and –1 for nondiseased. The log likelihood function can

then be written as

[ðbÞ ¼ �
Xn

i¼1

ln
�

1þ exp
�
�Xib,yi

��
: (Equation 1)

The group ridge (GRASS) estimator, bbl, can be obtained by mini-

mizing the penalized likelihood function, which is the negated log

likelihood plus the penalty term, given by

SlðbÞ ¼ �[ðbÞ þ l
XG

g¼1

wg

�
kbgk1

�2
, (Equation 2)

in which kbgk1 ¼
P

j˛geneg
jbjj, and l is a penalty parameter that

governs how much penalty will be imposed on the parameter

estimators. As one can see, the penalty function is the sum of

squares of the [1 norm kbgk1 over all genes weighted by a weight

function wg. It applies the ridge penalty among genes and the lasso

penalty within each gene. Note that the intercept is not ‘‘regular-

ized.’’

Different weighting options, wg, for the penalty term can impact

the estimation. One can weigh each gene equally by using wg ¼ 1.

Alternatively, one can assign weights based on gene length. For

example, genes with more eigenSNPs may be penalized more by

employing a weight, wg ¼
ffiffiffiffiffi
kg

p
, suggested by Yuan and Lin.26

This weight function rescales the penalty function with respect

to the dimensionality (number of eigenSNPs) of the parameter
2010



vector, bg. In our analysis, we choose wg ¼ 1, so that genes with

different numbers of eigenSNPs are evaluated equally in the set.

However, to ensure that each gene contributes equally, we stan-

dardize the statistic contributed by each gene when forming the

gene set statistics (see below).

Group Ridge Estimation Algorithm
We minimize the function in Equation 2 to obtain the group ridge

estimator, bbl. When the number of genes and eigenSNPs is large,

minimizing SlðbÞ can be challenging. Our GRASS algorithm

adopts ideas from several algorithms in the literature.28–30 We

use a block coordinate descent method to search for the optimal

estimate for each block (group and gene), and, within each

block, we employ a cyclic coordinate descent algorithm28,29 (see

Appendix A, Algorithm A1 for the general idea, and Algorithm

S1 and S2 available online for detailed procedures).

Briefly, the algorithm decreases the objective function one coor-

dinate (parameter) at a time while fixing other parameters at the

current values. The procedure is repeated until some convergence

criterion is met. To find the tentative next step, we use a one-step

Newton-Raphson algorithm. The Newton-Raphson algorithm

requires the objective function to be convex and smooth in order

to find the minimum. With the group ridge penalty, the objective

function is convex and smooth everywhere except for when some

component of the regression vector equals zero as a result of the

lasso penalty within a gene. Therefore, at each tentative step,

the algorithm checks whether the estimate crosses zero and, if

so, the estimate is set to zero. When the current estimate is zero,

the algorithm tries both directions to see whether either direction

improves the objective function and, if not, then the estimate

remains zero. Because of convexity, it is not possible for both direc-

tions to improve the objective function.

We choose l by Akaike’s information criterion (AIC) for each

gene set. AIC is defined as AIC ¼ 2p – 2[, in which p is the number

of parameters in the model and [ is the log likelihood for the

estimated model.31

Gene Set Association Analysis
After l is chosen based on AIC, we obtain the regression estimates

at the optimal l value and use these estimates to measure the

strength of the association of the gene set with disease risk. We first

summarize the association of each gene and then summarize the

association of all genes together. By doing this, we can avoid

potential bias as a result of varying gene size. Specifically, the

gene-level association is estimated by

kbblgk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibb2

g1 þ bb2

g2 þ.þ bb2

gkg

r
, (Equation 3)

where bbg1,.,bbgkg
are the estimated regularized log odds ratios for

eigenSNPs in the gene g, obtained from minimizing SlðbÞ with

the optimal l value. Note that because of the variable selection

feature of group ridge within each gene, many of the estimated

regularized log odds ratios are zero.

To adjust for gene size, one can choose a weighting function wg

in Equation 2 based on the structure of the data; however, the

choice can be ad hoc. Here we use a permutation-based approach

to adjust for gene size. Specifically, we use wg ¼ 1 in Equation 2 to

obtain bblg and to standardize the gene-level statistic, kbblgk, by

~bg ¼
kbblgk � bmgbsg

, (Equation 4)
The Ame
in which bmg and bsg are the mean and standard deviation estimates

of kblgk under the null hypothesis that the gene g is not associated

with disease risk. In this way, every gene, regardless of its size,

contributes equally to the gene set association statistics. To esti-

mate bmg and bsg , we permute the case and control status B times,

and for each permutation we obtain kbb0

lgk via the same l value

as the original data set. We then calculate bmg and bsg by the

mean and standard deviation of kbb0

lgk s over B permutations.

The gene set association statistic for a gene set S is then

defined as

Tl ¼ k~bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b

2

1 þ.þ ~b
2

G

q
, (Equation 5)

in which ~bg ,g ¼ 1,.,G are the standardized estimates (Equation 4)

for each gene g in the set. Via the same permutation, we can stan-

dardize the gene set statistics under the null hypothesis and obtain

the B null statistics T0
b(l), b ¼ 1, 2, ., B.

To test whether the gene set S is associated with disease risk, we

compare the observed statistic Tl with the null statistics and calcu-

late the p value as

p value ¼
�

T0
b ðlÞRTl; b ¼ 1,2,.,B

�
B

: (Equation 6)

Another option is to approximate the p value based on a normal

distribution for Tl under the null hypothesis by 1�F�1 Tl�mGðlÞ
sdGðlÞ

��
.

One could estimate the mean, mG(l), and standard deviation,

sdG(l), of Tl under the null hypothesis based on fewer number

of permutations than that for nonparametric p values in Equation

6 and thus save on computation time substantially. We summarize

GRASS in Algorithm A2 in the Appendix.
Results

Simulations

Comparison with Other Penalty Functions

We simulated different scenarios to evaluate the perfor-

mance of group ridge logistic regression under the null

and alternative hypotheses. In each simulation set, we

compared the proposed group ridge penalty with several

commonly used penalties: lasso,20 group lasso,26,30 group

bridge,27 and conventional logistic regression with no

penalty. The lasso penalty is the [1 norm of parameter

values
Pp

i¼1jbij, in which p is the total number of predictors

in the regression. The group lasso penalty uses [1 norm at

the group level and [2 norm within each group, and it is

defined as
PG

g¼1kbgk2, in which G is the number of groups.

The group bridge penalty uses [g norm (0 < g < 1) at the

group level and [1 norm within each group. Here we chose

g ¼ 0.5, and the group bridge penalty is then defined

as
PG

g¼1ðkbgk1Þ
0:5.

For group ridge, lasso, group lasso, and group bridge

penalty functions, we estimated the bs by minimizing

the negated log likelihood plus the corresponding term

defined by different penalty functions, similar to Equation

2. We chose the penalty parameter l for each simulated

gene set by AIC criterion. For no penalty, we obtained

the b estimates by applying univariate logistic regression
rican Journal of Human Genetics 86, 860–871, June 11, 2010 863
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Figure 2. p Values under the Null for Different Penalty Functions with Fixed and Selected l

(A and B) p value histograms from different penalty functions under the null, with penalty parameter value for null statistics chosen by
AIC for each permuted data set (A) and penalty parameter value fixed by the value of l in the corresponding original pathway (B).
on each of the simulated eigenSNPs. To calculate the

p values for each penalty function, we used the permuting

phenotype scheme proposed above. We then summarized

and standardized gene level statistics according to Equa-

tion 4 and formulated the gene set level statistics with

Equation 5. To save computation time, we used B ¼ 100

permutations to evaluate the general trend of the perfor-

mance for each method (we used B ¼ 1000 in the real

data analysis described below to increase accuracy). For

each permutation, we fixed the penalty parameter value

to the corresponding l used in calculating the observed

statistic for the gene set being tested. We also performed

a set of simulations, in which we chose the optimal penalty

parameter value by AIC for each permuted data set, and

found that the two choices were generally comparable

(see Figure 2). Because fixing l saves substantial computing

time, we performed the rest of the simulation study with

fixed l.

In all of the simulations, we simulated 500 cases and 500

controls. For each set of simulations, we generated 100

pathways, with 20 genes each. For each gene, we generated

a group of eigenSNPs in which each eigenSNP is normally

distributed with effect size being zero under the null (simu-

lation A) and moderate additive effect size, (0.20, 0.12, and

0.10 for simulations B, C, and D, respectively). In simula-

tions B, C, and D, the alternative gene sets consist of 1,

5, and 10 genes, respectively, each harboring one eigenSNP

associated with disease risk. Thus, the three alternative

simulations have decreasing effect sizes but with increas-

ing amount of signals. In simulations A1, B1, C1, and

D1, each gene has k eigenSNPs, in which k is randomly

selected from 3 to 20. Thus, the total number of eigenSNPs,

p, in a pathway is ~200, which is less than the sample size,

N ¼ 1000. In A2, B2, C2, and D2, we increase the

maximum of gene size from 20 to 100 eigenSNPs and

generate k randomly from 3 to 100, so that p R N.

Figure 2 shows the p value histograms under the null

hypothesis for different penalty functions when p < N,

with varying gene size (each gene harbors 3–20
864 The American Journal of Human Genetics 86, 860–871, June 11,
eigenSNPs) based on 1000 simulations. The histograms

show that group ridge gives a nearly uniform distribution.

An advantage of p values being uniformly distributed is

that we can accurately estimate false discovery rates

(FDR) when accounting for multiple hypothesis testing.

In comparison, the distributions for lasso, group lasso

and group bridge are more like a mixture of a continuous

distribution and a point mass at 1. This is because these

penalty functions do considerable variable selection, and

for many null pathways they don’t select any genes. For

these cases, the test statistics would be 0, which yields

p ¼ 1. We also observed a slightly inflated type I error

rate under the null, especially for lasso penalty when

p R N (see Table 1, simulations A1 and A2). When we

set all gene sizes equal or increased the number of permu-

tations to B R 1000, all of the methods controlled the

type I error rate. This suggests that when adjusting for

gene size in the test statistics, the standard deviations in

Equation 4 are not well estimated, particularly if it is

a mixture distribution of lasso type of statistics. Therefore,

for lasso penalty when adjusting for gene size, a larger

number of permutations is required to better control the

type I error rate.

In Table 1, when both p<N and p R N, group ridge is the

most powerful among all of the methods, with lasso closely

behind. Group lasso deviates from the goal of pathway

analysis and does not behave well in any situation. The

no-penalty and group bridge approaches have intermediate

performances. Lasso penalty often yields a smaller number

of selected variables than group ridge and tends to favor

pathways with a single SNP, having a large effect. Group

bridge penalty selects even fewer variables than lasso and

incurs a substantial loss of power. For the no-penalty

approach, the performance deteriorates as the signal-to-

noise ratio decreases. This is probably because the no-

penalty approach, which is really just the ordinary logistic

regression, includes many nonassociated SNPs in the test

statistic and thus has reduced power to detect disease risk-

associated gene sets when the signal is low.
2010



Table 1. Type I Error Rates and Power for Different Penalty Functions

Set N1 p2 G*/G3 Effect Size

Type I Error or Power (a ¼ 0.05)

Group Ridge (GRASS) Lasso No Penalty Group Lasso Group Bridge

A1 1000 ~200 0/20 0 0.06 0.07 0.07 0.01 0.06

A2 1000 ~1000 0/20 0 0.07 0.09 0.08 0.06 0.04

B1 1000 ~200 1/20 0.2 0.73 0.69 0.29 0.24 0.22

B2 1000 ~1000 1/20 0.2 0.61 0.55 0.18 0.08 0.11

C1 1000 ~200 5/20 0.12 0.72 0.66 0.37 0.19 0.22

C2 1000 ~1000 5/20 0.12 0.51 0.43 0.14 0.06 0.12

D1 1000 ~200 10/20 0.1 0.80 0.76 0.54 0.09 0.53

D2 1000 ~1000 10/20 0.1 0.51 0.45 0.18 0.09 0.13

Summary of type I error rates (set A) and power (sets B, C, and D) for group ridge, lasso, no penalty, group lasso, and group bridge under various simulation
scenarios. The significance level a ¼ 0.05.
1 Sample size.
2 Total number of eigenSNPs in each pathway.
3 Number of genes associated with disease risk (numerator) out of the total number of genes (denominator) in each set.
In summary, group ridge appears to have uniformly

distributed p values under the null. The uniform distribu-

tion doesn’t seem to change whether we fix or optimize

l in the null statistic calculation and thus can be imple-

mented with fixed l to increase computational efficiency.

It provides good power when the number of signals is rela-

tively small, and the effect size is moderate even in the

‘‘large p small n’’ situation. We have also examined the

approximate p values based on the asymptotic normal

distribution with a moderate number of permutations

(B ¼ 100). The performance is comparable with nonpara-

metric p values, though with much less computation

time. However, the asymptotic theory of group ridge has

not yet been established. Hence, in applications in which

the test statistics may not follow a normal distribution, it

would be prudent to use nonparametric p values.

Comparison with Other Gene-Set-Based Approaches

We also simulated different scenarios to compare the

proposed GRASS algorithm with recently published gene-

set-based approaches. These include the method by Wang

et al.,7 the PLINK gene set option,18 and ALIGATOR by Hol-

mans et al.9 Briefly, the idea behind the method by Wang

et al. is to assign the top individual SNP association statistic

within the gene as the statistic of the gene and to rank all the

genes by significance. The method then compares the

distribution of the ranks of genes from a given pathway to

that of the remaining genes via a weighted Kolmogorov-

Smirnov test, with greater weight given to genes with

more extreme statistic values. PLINK18 offers an option to

perform gene set analysis (we termed this ‘‘Plink’’). For

each pathway, Plink selects up to Nsnp ‘‘independent’’

SNPs (here independent is defined as the pair-wise r2s all

below a certain threshold) with marginal association p

values less than a predetermined threshold. The method

calculates the pathway statistic as the average of the test

statistics from the selected SNPs. The significance levels
The Ame
for pathways are determined by permuting the phenotypes,

and it compares the observed pathway statistics to the null

statistics calculated from permutation. ALIGATOR9 is

similar to Plink in the sense that both use a preselected p

value threshold to define a set of significantly associated

SNPs. Plink averages the test statistics over all of these

SNPs, whereas ALIGATOR counts the number of genes in

a pathway that contains these SNPs, with each gene

counted only once regardless of the number of significant

SNPs in the gene. Instead of permuting phenotypes to

establish the null distribution as in Plink, ALIGATOR uses

resampling of SNPs. ALIGATOR thus only requires a p value

or summary statistic from each SNP as input.

Our simulation is based on real colon cancer GWAS data

from the Women’s Health Initiative (WHI) study.32 A more

detailed description of the data set can be found in the

next section. We chose a random KEGG pathway with

20 genes, the HSA00534 heparan sulfate biosynthesis

pathway, as our basic pathway to simulate different sce-

narios. Different methods have slightly different ways of

defining a gene region and assigning SNPs to genes. In

this simulation, we adopted the definition of a gene region

suggested by Holmans et al.9 to make the SNP assignments

consistent for all methods: SNPs that are within 20 kb of

the exons of a gene are assigned to the gene. In simulation

E1, we chose the five smallest genes (ranging from 4 to 11

SNPs) from this pathway, and for each gene we randomly

selected one SNP (we call it the ‘‘tagging’’ SNP) and simu-

lated one causal SNP, which is in LD, with the tagging

SNP (maximum r2 ¼ 0.8). We then simulated the case-

control status based on the model logit PrðY ¼ 1Þ ¼gfP5
i¼1biSNPi þ 3, in which SNPis are the simulated causal

SNPs with the log odds ratios bis generated from U[1.3,

1.4] and 3 follows a standard normal distribution. These

simulated casual SNPs are not included in the SNP data,
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Table 2. Power Comparison with Existing Pathway Approaches

Set G1 p2 Causal SNPs a Level

Power

Wang Plink ALIGATOR GRASS

E1 20 444 53 0.05 0.48 0.68 0.41 0.87

0.01 0.24 0.35 0.24 0.79

E2 20 444 54 0.05 0.54 0.92 0.55 0.91

0.01 0.18 0.50 0.16 0.80

F1 30 2286 same as in E1 0.05 0.29 0.44 0.18 0.87

0.01 0.20 0.23 0.02 0.80

F2 30 2286 same as in E2 0.05 0.32 0.80 0.33 0.87

0.01 0.17 0.61 0.13 0.73

Summary of power comparison of Wang et al.,7 Plink,18 ALIGATOR,9 and the proposed GRASS under various simulated scenarios.
1 Number of genes.
2 Total number of SNPs.
3 One causal SNP in each of the five smallest genes (range: 4–11 SNPs).
4 One causal SNP in each of the five largest genes (range: 28–91 SNPs).
nor are they in the subsequent gene set analysis. However,

the tagging SNPs are kept. For genes in which SNPs are in

LD, many of them may be associated with disease risk.

With this simulation, we kept the real LD structures in

the data and the potential moderate correlation structures

of a real biological pathway. In simulation E2, we chose the

five largest genes (ranging from 28 to 91 SNPs) to embed

the causal loci and simulated the disease status, similar to

E1. Note that here the definition of large versus small genes

is defined by the number of SNPs in the gene. Therefore,

a larger gene likely has more SNPs in LD with the causal

locus than a smaller gene. In simulations F1 and F2, we

kept the same structures as in E1 and E2, respectively, but

modified the pathway size by adding ten random very

large genes with 105–290 SNPs to the pathway. The total

number of SNPs in the pathway HAS00534 heparan sulfate

biosynthesis is 444 (in E1 and E2), and with the ten added

genes, the total number of SNPs in the pathway is 2286

(in F1 and F2). These simulations represent four different

scenarios: in E1, the signals reside in small genes with

few SNPs in LD, whereas in E2, the signals are in larger

genes with more SNPs in LD. In simulations F1 and F2,

both the number of nonassociated genes and the number

of nonassociated SNPs are increased. This will reduce the

signal-to-noise ratio in F1 and F2. For each simulation

scenario, we generated 100 data sets. We want to point

out that we didn’t simulate scenarios with which the

pathway has only one significantly associated SNP in one

gene, because we think such signals would likely be picked

up by marginal association analysis and do not need

pathway analysis for detection.

We evaluate the performance of Wang et al., Plink,

ALIGATOR, and our proposed GRASS algorithm. For Plink

and ALIGATOR, p < 0.01 was used to define the signifi-

cance of the SNPs. For Plink, SNPs with LD r2 > 0.5 are

filtered out. All methods control the type I error rate
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(data not shown). Because of the discrete nature of the

test statistic of ALIGATOR, which is defined as the number

of genes ‘‘hit’’ by significant SNPs, ALIGATOR can be

conservative when the number of genes in a pathway is

small or when SNP significance threshold is set to be high.

Table 2 shows the power comparison of these methods

in the four simulated scenarios. It can be seen that for

signals residing in small genes (simulations E1 and F1),

GRASS is more powerful than all other methods. For

signals residing in large genes, Plink and GRASS have com-

parable power when a < 0.05, and both perform better

than the Wang et al. method and ALIGATOR. When

we choose a more stringent significant cutoff, a < 0.01,

the power of GRASS is much higher than all other

methods. As the number of nonassociated genes increases

(in F1 and F2), all methods lose power, with GRASS losing

the least. This is because GRASS selects disease-associated

eigenSNPs within a gene while shrinking the contributions

of genes to the pathway statistic. So when there are more

nonassociated genes added to the pathway, GRASS will

shrink the contributions of these genes to a small amount

compared to those associated with disease risk, regardless

of the number of SNPs in the gene. Thus, those large and

nonassociated genes did not hurt as much to the power

of the GRASS method as to other approaches.

It is interesting to see that Plink has good power when

the signals reside in large genes. This is probably because

in large genes, more SNPs are in LD with the causal locus

than in small genes, which makes Plink less likely to miss

the region that harbors the causal locus. Another possible

reason may be that even though Plink filters out SNPs in

high LD (here r2 > 0.5), the remaining selected SNPs are

not absolutely ‘‘independent’’; there might still be small

to moderate LDs among the selected SNPs. Because Plink

pathway statistic is defined as the average statistic of all

the selected SNPs, the small to moderate LDs among those
2010



Table 3. Top-Ranking KEGG Pathways Associated with Colon Cancer Risk in the Women’s Health Initiative Sample

Rank KEGG Number Pathway Name No. Genes/No. eigenSNPs p Value

1 HSA00760 Nicotinate and nicotinamide metabolism 23/602 0.015

2 HSA04350 TGF-beta signaling 89/2912 0.035

Top-ranking KEGG pathways that are associated with colon cancer risk at significance level a ¼ 0.05. p values are calculated from Equation 6 based on 1000
permutations.
SNPs, particularly if they are also in LD with the causal SNP,

may help boost the power.

The powers of Wang et al. and ALIGATOR are compa-

rable, regardless of whether the signals are in small genes

or in large genes. This is because the gene set statistics for

both methods use essentially only the strongest signal

within each gene. Wang et al. chooses one SNP within

each gene that has the maximum association test statistic.

ALIGATOR counts a gene only once, even if there are

multiple SNPs in the gene passing the p value threshold.

Neither method makes use of the LD information, and as

a result, they may lose power compared to other methods

in situations. For example, multiple SNPs in a gene are in

LD with the causal SNP or multiple independent causal

SNPs associated with disease risk in a gene, although we

didn’t simulate the latter case. In contrast, GRASS is more

flexible in terms of number of SNPs (or eigenSNPs) being

selected in a gene, and thus it is less likely to miss these

multiple disease-associated SNPs in the gene. Plink’s test

statistic is based on SNPs, not on genes, and therefore is

also able to account for multiple associated SNPs in a single

gene.

A Colon Cancer Genome-wide Association Study

We applied the GRASS algorithm to a colon cancer case-

control study nested within the multicenter WHI study.32

The data set contains 483 cases and 530 controls, fre-

quency matched based on age. All participants are female

and self-reported as white. Samples were genotyped with

the Illumina HumanHap550 Genotyping BeadChip.33

Samples with call rate< 98% were excluded; SNP exclusion

criteria was call rate< 98%, MAF< 0.05, or deviations from

Hardy Weinberg equilibrium (p < 0.0001), resulting in

392,361 SNPs. The quantile-quantile plot shows that the

p values for marginal association of log additive model

adjusting for age and the first three major principal compo-

nents derived by using EIGENSTRAT22 closely follow the

45� line (see Figure S1), with a genomic control value of

1.01. Therefore, we only used the first three major prin-

cipal components to account for any potentially hidden

structure in the pathway analysis. SNPs were assigned to

nearby genes by relative distance (see Supplemental Gene

Definition). Pathways were defined by using the KEGG

database.4 There are a total of 200 KEGG human disease

pathways (details can be found on the KEGG website).

We restricted our analysis to pathways with at least ten

genes, in line with Efron and Tibshirani.13 After exclu-

sions, there are 170 KEGG pathways with 10–253 genes.

The significance level 0.05 is used throughout the analysis.
The Ame
Two pathways were identified as significant via GRASS

(Table 3). A list of the top ten pathways, all of which

have p < 0.1, is given in Table S1. The highest ranked

pathway is the nicotinate and nicotinamide metabolism

pathway (p¼ 0.015), followed by the transforming growth

factor beta (TGF-beta) signaling pathway (p ¼ 0.035).

Neither is significant at level 0.05 after adjusting for mul-

tiple comparison with the Bonferroni correction. Both

pathways have a potential biological role in colon can-

cer etiology. Nicotinamide and nicotinate are the two

main forms of niacin (vitamin B3) and are precursors of

nicotinamide adenine dinucleotide (NAD) and nicotini-

mide phosphate adenine dinucleotide (NADP). NAD and

NADP are cofactor enzymes involved in cellular redox reac-

tions.34 Furthermore, NAD has been shown to play a role

in signaling pathways involved in DNA repair, intracellular

calcium signaling, and transcriptional regulation.34,35

Genes in the nicotinate and nicotinamide metabolism

pathway have been shown to be differentially expressed

in colon cancer cells.34 The TGF-beta signaling pathway

is commonly altered in human cancers.36 The pathway

signals through the TGF-beta serine or threonine kinase

receptors and downstream intercellular proteins of the

SMAD transcription factor family37 to inhibit cell prolifer-

ation and induce apoptosis; the pathway also induces

tumor progression via cell differentiation, migration, and

adhesion.36 See Supplemental Gene Lists for the top two

pathways by GRASS algorithm.

We investigated the sensitivity of the GRASS algorithm

to the choice of convergence criterion and found that the

results of our colon cancer analysis are largely unchanged

with various choices of convergence criterion unless the

estimated penalty parameter, l, changes dramatically

under different criteria. With a relaxed convergence crite-

rion, the l estimates tend to be larger, leading to more

penalization and more conservative p value estimation.

We also applied Wang et al.,7 Plink,18 and ALIGATOR9

pathway methods to the same GWAS data. The Wang

et al. approach identified a total of 15 significant pathways

(see Table S3). None was significant after Bonferroni correc-

tion, and the minimum FDR was 0.49. The top pathway is

valine leucine and isoleucine degradation. There is some

observation that the expression of genes in the valine

leucine and isoleucine degradation pathway may be

decreased in metastatic tissue from colon cancer cases.38

For Plink, we chose the default r2 > 0.5 as the SNP LD

filtering criterion and 0.001 as the SNP p value thresh-

old. Eight pathways were found to be significant (see
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Table S3), and none were significant after multiple testing

correction. Among the eight pathways, the top one is the

notch signaling pathway, which plays a key role in cell fate

determination. Similar to the TGF-beta pathway, several

genes in this pathway are up- or downregulated in colon

cancer tissue. Interestingly, one mechanism of notch sig-

naling is to inhibit TGF-beta signaling.39,40 We tried two

other thresholds, 0.005 and 0.0001, for p values. A total

of eight and five pathways, respectively, were identified.

Among these, five pathways were identified by all three

p value thresholds (and they are the top five pathways).

We also tried another r2 filtering criterion of 0.2. The

results were largely not changed.

When using ALIGATOR to analyze our data, we chose

the same p value threshold, 0.001, as in Plink and found

only one pathway, O-glycan biosynthesis, as significant

(see Table S4). The O-linked mucin type glycans are often

altered in colonic disease, including colon cancer. Alter-

ations in O-glycans lead to changes in the interactions

between the intestinal cells and their surrounding

microenvironment. These changes may have oncogenic

effects.41,42 We also used 0.005 and 0.0001 as the thresh-

olds for p values and found four and five pathways, respec-

tively; none are overlapped.

In terms of computation efficiency, ALIGATOR is the

fastest and takes about 1.5 hrs to finish the analysis of

the WHI data, using 12 computer nodes with 8 processors

each. As a comparison, for the same data set under the

same computing power, the proposed GRASS method

takes ~5 hr and the Wang et al. approach, based on logistic

regression, takes ~24 hr. Plink, as a software, is less

amenable to parallel computing. If it can be parallelized,

the computation time should be similar to GRASS.
Discussion

We have developed GRASS, an algorithm that performs

a novel form of regularized logistic regression to assess

the concerted association of genes with disease risk. The

regularization has a dual function: selecting SNPs within

a gene by lasso penalty while simultaneously shrinking

the estimates of the genes by ridge penalty. The method

is most powerful when there are several genes in the

pathway associated with disease risk.

The GRASS algorithm tests the null hypothesis that

none of the genes in a gene set harbor SNPs associated

with disease risk. To test this hypothesis, we estimated

the null statistics from permuting phenotype labeling.

A related null hypothesis12 is that a gene set is not more

enriched with disease-associated genes than a randomly

sampled set of genes. To test the latter hypothesis of

enrichment, one can adapt the resampling procedure to

randomly sampling genes from the genome. In gene

expression data analysis, there are some potential differ-

ences between testing the two hypotheses.12 This is

because many genes are differentially expressed and
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gene-gene correlations are relatively common in expres-

sion data. When testing the latter hypothesis of enrich-

ment by resampling genes, there is also a concern about in-

flated type I error rate12,15 if gene-gene correlation is not

adequately taken into account. Unlike expression data,

GWAS signals are much more sparse, and intergene

correlations are rarely observed. The weak gene-gene corre-

lation is because long-range intergene LD is relatively

uncommon. In our study of GWAS data, we found that

the difference between testing the two hypotheses is rela-

tively small.

In testing either hypothesis, it is important to adjust for

gene size. Because of multiple comparisons, a larger gene is

more likely to produce significant associated SNPs than

a smaller gene. If gene size is not properly adjusted, a

bias is likely to occur, and p values of gene set statistics

may be correlated with gene sizes.7 In our algorithm for

gene set association, we permuted phenotypes and stan-

dardized the statistic contributed by each gene while

testing the significance of pathways with the same permu-

tation data sets. Interestingly, even after adjustment of

gene size, we found a modest correlation (Pearson correla-

tion¼ 0.191) between our estimated pathway p values and

the number of eigenSNPs in a pathway. This nonzero corre-

lation suggests that there might be more causal variants in

larger pathways with longer genes. In the resampling gene

procedure for testing enrichment, we can additionally

permute the phenotype to standardize the test statistic to

adjust for gene size. However, this is rather costly in

computation time. Alternatively, a weight function may

be imposed in the regularize regression in Equation 2 so

that longer genes are subject to a larger penalty term;

however, the choice of the weight function may become

ad hoc.

Notably, the GRASS algorithm can be applied regardless

of how one groups SNPs to genes. To group SNPs to genes,

one can use absolute genetic distance (e.g., SNPs within

50 kb of the exons of a gene are allocated to the gene7)

or relative distance that allocates each SNP to the nearest

gene. We chose the latter, because it is more comprehen-

sive and flexible. Although grouping by relative distance

could result in misclassification and/or false enrichment

with similar SNP representation for nearby genes, this is

less of a concern when considering functional gene sets,

because nearby genes do not often belong to the same

functional set. The GRASS algorithm can also be applied

regardless of how a gene set is defined, for example,

whether the definition is based on other informatics data-

bases (e.g., GO, MsigDB) or gene networks constructed

from other biologic information (e.g., gene-expression or

protein-protein-interaction networks).

Several approaches have recently been proposed for

pathway analysis that use GWAS data. We compared our

GRASS algorithm with three of them: Wang et al.,7 Plink,18

and ALIGATOR.9 Through simulations, we showed that

our GRASS method generally has good power compared

to other approaches, even when the signal-to-noise ratio
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is low or when signals reside in smaller genes with modest

LD. In the real data analysis, we can see that different

methods identified different pathways. This finding is

not unexpected, because different methods are powerful in

detecting different types of pathways. Ideally, there would

be a benchmark data set with known pathway effects to

compare all of these methods. However, to the best of

our knowledge, such a data set is currently not available.

Alternatively, one can validate these findings in an inde-

pendent data set, which also may need to be developed.

Wang et al. uses a weighted Kolmogorov-Smirnov test to

assess whether the distribution of the ranks of genes from

the pathway differs from the rest of the genes. Thus,

a significant pathway may not necessarily indicate that

the pathway is associated with disease risk. In addition,

Wang et al.’s choice of weight may favor pathways in

which one or a few SNPs have very large test statistics.

Other than choosing the weight, the Wang et al. approach,

in fact, does not need any other choices to perform the test.

Both Plink and ALIGATOR, on the other hand, require

that one preselect associated SNPs by using a threshold.

Plink simply averages the test statistics of SNPs that exceed

the threshold, whereas ALIGATOR counts the number of

genes that contain such SNPs. As expected, both methods

can be sensitive to the choice of the threshold. An advan-

tage of ALIGATOR is that it only needs p values or sum-

mary statistics from tests of SNP associations and thus is

particularly useful when individual-level SNP data are not

available, for example, in a large-scale meta analysis.

However, because it does not take into account the sample

variation as in other approaches, the test can be sensitive

to the SNP significance threshold if the sample size is small

to moderate, as in the case of WHI data. Plink is quite

powerful if signals reside in genes with dense SNPs.

When the signal-to-noise ratio decreases, the power also

does not reduce as much as the Wang et al. approach or

ALIGATOR, particularly for large genes. This is probably

because Plink makes use of the small to moderate LDs

that are often present in large genes. The GRASS algorithm,

which does SNP selection within genes, appears to be the

least affected when the signal-to-noise ratio is reduced.

We applied the GRASS algorithm to a colon cancer

GWAS data set, using our GRASS algorithm to identify

disease risk-associated gene sets defined by KEGG path-

ways. Although none of the pathways were significant

after adjustment for multiple testing, the top pathways

have putative functional connection to colon cancer.

In particular, the second ranked pathway, the TGF-beta

signaling pathway, involves signal transduction and regu-

lation of cell proliferation. Based on our gene definition,

the TGF-beta pathway includes three chromosomal

regions previously identified in GWAS studies as being

associated with risk of colorectal cancer: SMAD7

(rs4939827),43 8q24/MYC (rs6983267),44–46 and BMP4

(rs4444253).47 In fact, the TGF-beta pathway was recently

implicated in colorectal cancer based on the ten common

genetic variants identified from previous GWAS.48
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It is clear that findings that use the GRASS algorithm or

other approaches need to be replicated in an independent

data set via exactly the same approach as performed in

the original data set. Alternatively, replication could be

done via targeted genotyping, in which specific SNPs are

selected to validate the pathway findings. For example,

we can select SNPs that are most correlated with the

eigenSNPs that have nonzero effects in the test statistic

of an identified pathway. Another way to select SNPs for

replication is that we can first detect significant genes

within an identified pathway by comparing the gene statis-

tics in Equation 4 with the null statistics obtained from

the same permutation as in the gene set association anal-

ysis. Then we can choose the most significant and nonre-

dundant SNPs in these significant genes for replication.

Taking our WHI study as an example, there are ten genes

that are significant at level 0.1 in the TGF-beta signaling

pathway. To replicate this finding in an independent repli-

cation study, we suggest to choose the most significant and

nonredundant SNPs, e.g., r2 % 0.8, per significant gene.

The statistical framework presented by GRASS is general

and flexible. Because it is regression based, it can easily

accommodate other covariates such as age, gender, and

center, as well as major principal components,22 to account

for population substructure. It can also be extended to other

high-dimensional settings, when the number of predictors

is large and a priori information is available, to allow the

grouping of predictors. Both the direction of effects in

pathways and the relationship among the genes within a

pathway may be incorporated in studying gene-gene inter-

actions. Another extension may include the joint analysis

of multiple related pathways. Given that signals are usually

sparse in GWAS, such joint analysis could be powerful and

illuminating. Research in pathway analysis is rapidly

evolving, and many methods have been proposed to assess

the association to disease risk of potential factors based on

gene sets. We believe that with the fast-growing number

of available GWAS data, gene-set-based methods will soon

be more fully utilized for identifying pathways associated

with disease risk. Identification of such pathways could

potentially improve our biological understanding of disease

processes and help inform clinical decisions for disease

prevention and treatment.
Appendix A

Algorithm A1. A Block Coordinate Descent

Algorithm for Minimizing SlðbÞ
Initialize b to be a zero vector

repeat

b0)arg minb0
SlðbÞ

for each gene g ¼ 1, ., G do

find the optimal bg while fixing other bg 0 ðg 0sgÞ,
bg)arg minbg

SlðbÞ
end for

until some convergence criterion is met
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Algorithm A2. GRASS

for any given candidate gene set S do

for each gene g ¼ 1, ., G do

apply PCA on the standardized SNP matrix and

obtain the n 3 kg eigenSNP matrix Vg that represents

most, if not all, of the genetic variation in the gene

end for

X) V1,.,VGgf
apply group ridge logistic regression on the eigenSNP

matrix X and the phenotype y (Algorithm A1), choose

l by using AIC, and obtain the regularized b estimates

for b ¼ 1, ., B do

permute phenotype y and obtain yb, apply Algorithm

A1 with the same l chosen using the original data set,

and obtain the estimates b0 under the null

end for

for g ¼ 1, ., G do

calculate the mean and the standard deviation of kbgk
under the null, as defined in Equation 3, from b0

g

standardize the observed and the null gene estimates

by Equation 4

end for

compute the observed and null association statistics, Tl

and T0
b(l), b ¼ 1, ., B, for the gene set S by Equation 5

calculate p value by comparing the observed gene set

association statistic with the null statistics by Equation 6

end for

Supplemental Data

Supplemental Data include Supplemental Experimental Proce-

dures, two algorithms, four tables, and one figure and can be

found with this article online at http://www.ajhg.org.
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The URLs for data presented herein are as follows:

Kyoto Encyclopedia of Genes and Genomes (KEGG) Database,

http://www.genome.jp/kegg/pathway.html

Software Package for GRASS Algorithm, http://linchen.fhcrc.org/

grass.html

Women’s Health Initiative list of investigators, http://www.

whiscience.org/publications/WHI_investigators_shortlist.pdf
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